专利摘要:
A method and apparatus for endpoint detection for the stripping of a particular material, such as photo-resist material, from a substrate surface. A beam of light is projected onto the substrate surface and the fluoresced and/or reflected light intensity at a particular wavelength band is measured by a light detector. The light intensity is converted to a numerical value and transmitted electronically to a control mechanism which determines the proper disposition of the substrate. The control mechanism controls the cessation of the stripping process and may control a substrate-handling device which sequentially transfers substrates to and from a stripping chamber.
公开号:US20010009459A1
申请号:US09/796,232
申请日:2001-02-28
公开日:2001-07-26
发明作者:David Johnson;Joe Phillip;Todd Nielsen;Robert Hatfield
申请人:Johnson David R.;Phillip Joe Lee;Nielsen Todd C.;Hatfield Robert J.;
IPC主号:H01L21-67253
专利说明:
[0001] This application is a continuation of application Ser. No. 09/399,242, filed Sep. 20, 1999, pending, which is a continuation of application Ser. No. 08/963,508, filed Nov. 4, 1997, now U.S. Pat. No. 5,969,805, issued Oct. 19, 1999. [0001] BACKGROUND OF THE INVENTION
[0002] 1. Field of the Invention [0002]
[0003] This invention relates generally to the manufacture of semiconductor devices prepared by a method including photolithography. More particularly, this invention pertains to a method for inspecting semiconductor substrates to determine the completion of stripping (“endpoint”) during a plasma stripping process to remove a photo-resist material from a semiconductor substrate surface after photolithography. [0003]
[0004] 2. State of the Art [0004]
[0005] Semiconductor chips are produced in a multi-step process by which a plurality of identical electronic circuits is typically formed on a semiconductor substrate, such as a silicon wafer. The semiconductor substrate is then subdivided (diced) into individual chips which are further processed into packaged semiconductor devices or otherwise secured in higher-level packaging for ultimate use. [0005]
[0006] The electronic circuits are generally patterned into a semiconductor substrate by a series of steps including photolithography. To elaborate, a photo-resist material is coated onto the semiconductor substrate surface. As disclosed in commonly owned U.S. Pat. No. 5,350,236 issued Sep. 27, 1994, hereby incorporated herein by reference, the temperature of a semiconductor substrate during the application of a material can be monitored by measuring light reflected from a surface of the semiconductor substrate, such that the material and semiconductor substrate are not overheated. [0006]
[0007] After the photo-resist material has been coated on the semiconductor substrate surface, it is selectively exposed to a radiation source, such as by the passage of radiation (i.e., light, e-beam, or X-rays) through a mask having a desired aperture pattern defined therein. If a positive photo-resist material is used, the exposure to the radiation source converts the positive photo-resist material to a more soluble state which allows the exposed positive photo-resist to be removed with a solvent, thereby leaving a pattern substantially identical to the mask. If a negative photo-resist material is used, the exposure to the radiation source converts the negative photo-resist material to a less soluble state which allows the unexposed positive photo-resist to be removed with a solvent, thereby leaving a pattern substantially identical to the openings in the mask. Whether a positive or a negative photo-resist material is used, the photolithographic process results in a photo-resist pattern which will become the electronic circuit pattern on a semiconductor substrate. [0007]
[0008] Following the removal of the portions of the photo-resist material in the development process, the semiconductor substrate is subjected to further processing steps which may include doping, etching, and/or deposition of conductive materials in unprotected areas, i.e., areas devoid of photo-resist material. After one or more of these processing steps, the semiconductor substrate is subjected to a stripping step to remove the photo-resist material remaining on the semiconductor substrate. [0008]
[0009] The stripping of photo-resist material is commonly achieved using plasma etching. In plasma etching, a glow discharge is used to produce at least one reactive species, such as atoms, radicals, and/or ions, from relatively inert gas molecules. Basically, a plasma etching process comprises 1) at least one reactive species is generated in a plasma from a bulk gas, 2) the reactive species diffuses to a surface of a material being etched, 3) the reactive species is absorbed on the surface of the material being etched, 4) a chemical reaction occurs which results in the formation of at least one volatile by-product, 5) the by-product is desorbed from the surface of the material being etched, and 6) the desorbed by-product diffuses into the bulk gas. The materials used as photo-resist are generally organic polymers, such as phenol-formaldehyde, polyisoprene, poly-methyl methacrylate, poly-methyl isopropenyl ketone, poly-butene-l-sulfone, poly-trifluoroethyl chloroacrylate, and the like. Such photo-resist materials are generally etched in plasmas containing pure oxygen to produce species that attack the organic materials to form CO, CO[0009] 2, and H2O as volatile by-products.
[0010] After the removal of the photo-resist material, a subsequent processing step may include heating the semiconductor substrate in a diffusion furnace or applying a layer of material with a chemical vapor deposition system. Occasionally, a semiconductor substrate is inadvertently passed to a thermal furnace or vapor deposition system with incomplete removal of the photo-resist material. The resulting damage to the processing equipment may be severe. For example, furnace diffusion tubes are irreparably damaged by vaporized hydrocarbons and carbon from the photo-resist material and, thus, the furnace diffusion tubes must be replaced. The replacement equipment and/or the downtime to repair the processing equipment is usually very costly. [0010]
[0011] Furthermore, the photo-resist carrying semiconductor substrate and one or more subsequent semiconductor substrates entering the processing equipment prior to shutdown of the equipment are usually also contaminated and must be discarded. At a late stage of manufacture, a semiconductor substrate may have a value between about $10,000 and $20,000. Thus, even an occasional loss is significant. [0011]
[0012] Therefore, it is very important that completion (“endpoint”) of the photo-resist stripping be accurately detected. A common endpoint detection method with plasma etching is disclosed in U.S. Pat. No. 4,377,436 issued Mar. 22, 1983 to Donnelly et al. wherein endpoint detection during plasma-assisted etching is signaled by cessation or onset of spatially confined luminescence resulting from an etch reaction product. The light source for the luminescence comes from the plasma generation. However, as the use of microwave plasma etching has developed, the generation of the plasma has been removed from the etching chamber. The removal of the plasma generation from the etching chamber prevents excess heat buildup in the etching chamber caused by the plasma generation and allows for different frequencies and wavelengths to be used to create free radials (i.e., the reactive species). [0012]
[0013] The reactive species is formed remotely in a microwave reaction chamber and transported to the etching chamber, such as shown in U.S. Pat. No. 5,489,362 issued Feb. 6, 1996 to Steinhardt et al. No plasma is present in the stripping chamber with such a microwave plasma system. Therefore, there is no light source present in the chamber that can be used for detection of the endpoint removal of the photo-resist material. [0013]
[0014] Therefore, it would be advantageous to develop an apparatus and method of luminescent endpoint detection for the stripping of materials in a microwave plasma etching system employing a plasma chamber separate from its etching chamber. [0014] SUMMARY OF THE INVENTION
[0015] The present invention is an automated method and apparatus for determining the endpoint of the removal of a photo-resist material on the surface of a semiconductor substrate by the detection of fluorescence, reflection, or absorption of light by the photo-resist material. Hereinafter, the term “emanated light” is defined as the light resulting from a light striking the photo-resist material or other material including fluoresced light, reflected light, or absorbed light. [0015]
[0016] As mentioned above, photo-resist materials are generally organic polymers, such as phenol-formaldehyde, polyisoprene, poly-methyl methacrylate, poly-methyl isopropenyl ketone, poly-butene-1-sulfone, poly-trifluoroethyl chloroacrylate, and the like. Organic substances can generally fluoresce (luminescence that is caused by the absorption of radiation at one wavelength followed by nearly immediate re-radiation at a different wavelength) or will absorb or reflect light. Fluorescence of the photo-resist material at a particular wavelength, or reflection/absorption by the photo-resist material of light at a given wavelength, may be detected and measured, provided the material differs from the underlying semiconductor substrate in fluorescence or reflection/absorption at a selected wavelength or wavelengths. For example, a positive photo-resist generally fluoresces red or red-orange and a negative photo-resist generally fluoresces yellow. [0016]
[0017] In a particular application of the invention, the presence of photo-resist material on a semiconductor substrate surface may be rapidly and automatically determined, recorded, and used to determine when the photo-resist material has been removed from the semiconductor substrate surface. In a preferred application of the present invention, a semiconductor substrate is introduced into a stripping chamber which receives at least one reactive species, usually generated from oxygen, from a microwave plasma generator. The stripping chamber includes a first optical port and a second optical port positioned in a wall of the stripping chamber. A beam of light from a lamp passes through the first port, strikes the photo-resist material on the semiconductor substrate and is reflected as an emanated beam at an angle through the second optical port. Preferably, the photo-resist material differs from the semiconductor substrate in fluorescence, absorption, and/or reflection properties at some wavelengths of incident light. [0017]
[0018] The intensity of the emanated light will decrease when the photo-resist is stripped away. When the intensity has decreased to a level indicating that the photo-resist has been completely stripped away, the stripping process can be terminated. This detection method also allows the system to generate an error signal if the level indicating that the photo-resist has been stripped is not reached within a certain amount of time. Such an error signal would indicate that a semiconductor substrate was stripping poorly (i.e., too slowly) or the stripping equipment was not functioning properly. This error signal allows for the culling of the offending semiconductor substrate for rework or allows for the stripping equipment to be shut down for repair, which prevents the spread of photo-resist material contamination throughout other process steps. Furthermore, the throughput of the stripping equipment can be increased because empirically established finite strip times used in conjunction with endpoint detection of the photo-resist removal prevents the need for exaggerated strip times to ensure complete stripping. [0018]
[0019] In this invention, the semiconductor substrate is irradiated with light, which light may be monochromatic, multichromatic, or white. In one variation, the intensity of generated fluorescence particular to the photo-resist material at a given wavelength is measured. In another variation, the intensity is measured at a wavelength which is largely or essentially fully absorbed by the photo-resist material. In a further variation, the intensity of reflected light is measured at a particular wavelength highly reflected by the photo-resist material but absorbed by the substrate. [0019]
[0020] The intensity of the emanated light is measured by a sensing apparatus and the result inputted to a logic circuit, e.g., a programmable computer. The result may be recorded and used for a decision making step or to activate a culling device. [0020] BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
[0021] While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention can be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which: [0021]
[0022] FIG. 1 is a diagrammatic view of a photo-resist material stripping apparatus of the present invention; [0022]
[0023] FIG. 2 is a side view of an alternate photo-resist material stripping apparatus of the present invention; and [0023]
[0024] FIG. 3 is a side view of an alternate light detection configuration of the present invention. [0024] DETAILED DESCRIPTION OF THE INVENTION
[0025] FIG. 1 illustrates a stripping apparatus [0025] 100 of the present invention. It should be understood that the apparatus 100 of FIG. 1 is not meant to be an actual view of any particular stripping device, but is merely an idealized representation which is employed to more clearly and fully depict the process of the invention than would otherwise be possible.
[0026] The stripping apparatus [0026] 100 comprises a stripping chamber 102 having one or more entryways or portals (not shown) for the introduction and removal of semiconductor substrates, such as semiconductor substrate 104, into and from the stripping chamber 102. The semiconductor substrate 104 may be a semiconductor material comprising a slice of crystalline silicon (silicon wafer) or may include various semiconductive material or material layers, including without limitation silicon wafers, silicon-on-insulative (SOI) structure, silicon-on-sapphire (SOS) structure, gallium arsenide, or germanium.
[0027] The stripping apparatus [0027] 100 also includes a microwave plasma generator 106 which generates reactive species in a plasma from an oxygen containing gas 108 fed to the plasma generator 106. The reactive species travel down waveguide 110 into the stripping chamber 102.
[0028] A photo-resist material detection apparatus is integrated with the stripping chamber [0028] 102 for in situ automated determination of the progress in stripping of a photo-resist material 114 from the semiconductor substrate 104. Preferably, the photo-resist material 114 differs from the semiconductor substrate 104 in fluorescing, absorption, and/or reflection properties at some wavelengths of incident light. The semiconductor substrate 104 is shown on a movable stage 118 within the stripping chamber 102 to provide the desired positioning of the semiconductor substrate 104 with respect to a primary high energy beam 134. The movable stage 118 may be movable by one or more stepper motors 120 (shown in shadow lines) or other motive means controlled by electronic signals 122 from a control mechanism 124, such as a programmed general purpose computer, i.e., a personal computer driving appropriate switches.
[0029] The photo-resist material detection apparatus includes two optical ports, a first optical port [0029] 126 and a second optical port 128, which are positioned in an upper wall 132 of the stripping chamber 102. The primary high energy beam 134 of light from a high energy lamp 136 passes through the first port 126, strikes the photo-resist material 114 of the semiconductor substrate 104 at an angle of incidence α and is reflected as an emanated beam 138 at an angle of departure β (substantially equal to angle of incidence α) through the second optical port 128. Although the beam 134 may irradiate the entire surface of the semiconductor substrate 104 simultaneously, the beam 134 is preferably a sheet beam having a width (perpendicular to the plane of the drawing sheet) approximately the width of the semiconductor substrate 104. The semiconductor substrate 104 can be passed under the sheet beam using movable stage 118, enabling the inspection of the entire surface of the semiconductor substrate 104. Furthermore, as illustrated in FIG. 2, the semiconductor substrate 104 can be positioned on a rotating platform 180, wherein a sheet beam 182 is directed to a center point 184 of the photo-resist material 114 on the semiconductor substrate 104 and extends across the width (perpendicular to the plane of the drawing sheet) of the semiconductor substrate 104 resulting in emanated beam 190. The rotatable platform 180 is rotated about axis 186 such that the entire surface 188 of the photo-resist material 114 is contacted by the sheet beam 182. This allows for different perspectives of the photo-resist material surface 188 which will detect photo-resist material 114 that may be in a “shadow” due to the topography of the semiconductor substrate 104, if only one particular perspective is taken.
[0030] Fluoresced and/or reflected light produced by existing photo-resist material [0030] 114 in response to the beam 134 is also present in the emanated beam 138. The emanated beam 138 may be passed through an optical band pass filter or suppression filter 140 to absorb non-fluoresced light or undesired reflected light and produce a filtered light beam substantially free of such undesired wavelengths. For example, the emanated beam 138 may be passed through the optical band pass filter 140 to produce a light beam having a narrow wavelength band of, for example, 700 nm+/−80 nm. Such a wavelength is a characteristic fluorescing emission of commonly used positive photo-resist materials, as listed above.
[0031] The emanated beam [0031] 138 is transmitted into a photo-multiplier tube 142 for the ultimate generation of an electronic signal 156 indicative of the light intensity at the filtered light wavelength. The electronic signal 156 may be generated by a light intensity sensor 150, such as a silicon diode sensor, which generates an analog intensity signal 152. The intensity signal 152 is sent to a power meter 154 including an analog-to-digital converter, which converts the intensity signal 152 into an electronic binary numerical value comprising the electronic signal 156. The electronic signal 156 is preferably processed by a software program in the control mechanism 124 (preferably a programmed computer). It is, of course, understood that analog to digital conversion is not a necessary limitation. The control mechanism 124 can be configured to receive an analog signal directly.
[0032] The control mechanism [0032] 124 determines whether stripping endpoint has occurred and sends a cessation signal 160 to the microwave plasma generator 106 if endpoint is detected, or if the endpoint is not detected within a predetermined time frame. The control mechanism 124 also provides transfer instructions 162 to a wafer transfer device 148 based on electronic signal 156. The transfer instructions 162 are generated for either the detection of stripping endpoint or for the rejection of the semiconductor substrate 104. The transfer instructions 162 will trigger the placement and retrieval of the semiconductor substrate 104 into the stripping chamber 102 and from the stripping chamber 102 after the test to another location for further processing. The electronic signals 122 for stage control are also sent by the control mechanism 124 for controlling motion of the movable stage 118.
[0033] As illustrated in FIG. 1, the beam [0033] 134 is shown striking the photo-resist material 114 on the semiconductor substrate 104 at the angle of incidence α of about 45 degrees and the emanated beam 138 is shown reflected at the angle of departure β of about 45 degrees. The incident angle α for the beam 134 and the departure angle β for the emanated beam 138 are preferably between 0 and 45 degrees. However, by using a dichromatic mirror 172 (a mirror which reflects wavelengths of less than a given value, and passes wavelengths greater than the given value) as shown in FIG. 3, the beam 134 and the emanated beam 138 may both pass through the same port, and incident angle α and the departure angle β are both 90 degrees (i.e., perpendicular to the semiconductor substrate 104). The emanated beam 138 is shown offset from the beam 134 for the sake of clarity.
[0034] The high energy lamp [0034] 136 is preferably a mercury or xenon lamp which produces high intensity, fluorescence-inducing illumination. The light output from the high energy lamp 136 may be filtered by a band pass or excitation filter 144 for removing wavelengths from the primary high energy beam 134 which do not stimulate fluorescence, reflect, or absorb in the semiconductor substrate 104.
[0035] As indicated, the method depends upon a difference in fluorescence or light absorption/reflectance between the material to be detected, e.g., the photo-resist and the underlying substrate. A wavelength of incident illumination is typically chosen which maximizes the difference in fluorescence, absorption, or reflectance. It is preferred to use fluorescence as the measured output, but light absorbance may be used when the material to be detected strongly absorbs a particular wavelength of radiation while the substrate strongly reflects the same. [0035]
[0036] It should be understood that references herein to light of a particular “wavelength” encompass wavelength bands that are “about” a particular wavelength. In other words, the term “a particular wavelength” may include wavelengths both slightly longer and shorter than the “particular wavelength”. [0036]
[0037] Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof. [0037]
权利要求:
Claims (64)
[1" id="US-20010009459-A1-CLM-00001] 1. A method for stripping endpoint detection of a photo-resist material on a surface of a substrate, comprising:
positioning a surface of a substrate including photo-resist material on at least a portion thereof to receive illumination from a stationary light source;
illuminating the photo-resist material and any exposed portions of the surface of the substrate with a beam of light from a selected first direction with respect to the surface of the substrate;
collecting from a fixed location, light emanated from the illumination of the photo-resist material and the exposed portions of the surface of the substrate;
filtering the emanated light to pass at least one wavelength of filtered light indicative of the photo-resist material being present;
generating a signal indicative of an intensity of the filtered light; and
generating at least one process-influencing instruction dependent at least in part upon the signal indicative of an intensity of the filtered light.
[2" id="US-20010009459-A1-CLM-00002] 2. The method of
claim 1 , wherein the positioning of the substrate is conducted within an etching chamber and further comprising etching at least a portion of the photo-resist material on the surface of the substrate.
[3" id="US-20010009459-A1-CLM-00003] 3. The method of
claim 2 , further comprising transmitting the signal to a control mechanism for processing.
[4" id="US-20010009459-A1-CLM-00004] 4. The method of
claim 3 , further comprising generating in response to the signal an instruction to discontinue etching the photo-resist material on the surface of the substrate.
[5" id="US-20010009459-A1-CLM-00005] 5. The method of
claim 3 , further comprising generating in response to the signal an instruction for transmission to an automated substrate handling apparatus to control disposition of the substrate.
[6" id="US-20010009459-A1-CLM-00006] 6. The method of
claim 5 , further comprising moving the substrate by the automated substrate handling apparatus to a location designated to receive the substrate.
[7" id="US-20010009459-A1-CLM-00007] 7. The method of
claim 3 , further comprising sequentially positioning additional substrates having a surface including a photo-resist material on at least a portion thereof to be illuminated by the beam of light.
[8" id="US-20010009459-A1-CLM-00008] 8. The method of
claim 3 , further comprising transmitting the signal to a programmable computer for processing.
[9" id="US-20010009459-A1-CLM-00009] 9. The method of
claim 3 , further comprising determining the presence of the photo-resist material by detecting the presence of a selected wavelength of fluoresced light characteristic of the photo-resist material.
[10" id="US-20010009459-A1-CLM-00010] 10. The method of
claim 9 , further comprising filtering the beam of light from the light source while illuminating the photo-resist material to remove non-fluorescence producing light wavelengths from the beam of light.
[11" id="US-20010009459-A1-CLM-00011] 11. The method of
claim 3 , further comprising determining the photo-resist material being present by detecting the absence of at least one given wavelength of light characteristically absorbed by the photo-resist material and characteristically reflected by the substrate.
[12" id="US-20010009459-A1-CLM-00012] 12. The method of
claim 11 , further comprising filtering the beam of light while illuminating the substrate surface to limit light transmission to wavelengths substantially absorbed by the photo-resist material and substantially reflected by the substrate.
[13" id="US-20010009459-A1-CLM-00013] 13. The method of
claim 3 , further comprising determining the photo-resist material being present by detecting the presence of at least one given wavelength of light characteristically reflected by the photo-resist material and characteristically absorbed by the substrate.
[14" id="US-20010009459-A1-CLM-00014] 14. The method of
claim 13 , further comprising filtering the beam of generated light while illuminating the substrate surface to limit light transmission to wavelengths substantially reflected by the photo-resist material and substantially absorbed by the substrate.
[15" id="US-20010009459-A1-CLM-00015] 15. The method of
claim 3 , further comprising determining the photo-resist material being present by detecting the presence of at least one wavelength indicative of the presence of the photo-resist material.
[16" id="US-20010009459-A1-CLM-00016] 16. The method of
claim 3 , wherein generating the signal includes passing of the filtered emanated light through a photo-multiplier tube to generate the signal indicative of the light intensity.
[17" id="US-20010009459-A1-CLM-00017] 17. The method of
claim 2 , wherein positioning the substrate comprises positioning a semiconductor substrate.
[18" id="US-20010009459-A1-CLM-00018] 18. The method of
claim 2 , further comprising moving the substrate under the beam.
[19" id="US-20010009459-A1-CLM-00019] 19. The method of
claim 18 , further comprising positioning the substrate on a movable stage for moving the substrate for detection testing of an entire surface of the substrate.
[20" id="US-20010009459-A1-CLM-00020] 20. The method of
claim 3 , further comprising controlling movement of the movable stage by the control mechanism.
[21" id="US-20010009459-A1-CLM-00021] 21. The method of
claim 3 , further comprising positioning the substrate on a rotating platform for rotating the substrate for detection testing of an entire surface of the substrate.
[22" id="US-20010009459-A1-CLM-00022] 22. The method of
claim 3 , wherein illuminating the photo-resist material and any exposed portions of the surface of the substrate with a beam of light from a selected first direction with respect to the surface of the substrate comprises illuminating the photo-resist material and any exposed portions of the surface of the substrate with a sheet beam.
[23" id="US-20010009459-A1-CLM-00023] 23. The method of
claim 22 , wherein the sheet beam comprises a width at least as wide as a maximum width of the substrate.
[24" id="US-20010009459-A1-CLM-00024] 24. An apparatus for determining an endpoint for stripping of a material from a surface of
a substrate, comprising:
at least one high energy light source;
first optical apparatus positioned at a first location for forming a beam of high energy light and directing from a first direction the beam of high energy light to a preselected location suitable for accommodating a substrate having a surface including material on at least a portion thereof;
second optical apparatus remotely located from the first location of the first optical apparatus for collecting from a second direction at a second location generally opposite the first location of the first optical apparatus light emanated from the preselected location as a secondary light beam and directing the secondary light beam through a filter configured to pass a filtered secondary light beam;
a light intensity sensing apparatus for receiving the filtered secondary light beam, measuring an intensity thereof, and generating a signal representative of the measured light intensity; and
a control mechanism for processing the signal representative of the measured light intensity.
[25" id="US-20010009459-A1-CLM-00025] 25. The apparatus of
claim 24 , further comprising a stripping chamber suitable for receiving a substrate including material on a surface thereof.
[26" id="US-20010009459-A1-CLM-00026] 26. The apparatus of
claim 25 , further comprising an automated substrate handling apparatus for moving a substrate to and from the stripping chamber.
[27" id="US-20010009459-A1-CLM-00027] 27. The apparatus of
claim 26 , further comprising a plurality of sites for selective movement of a substrate thereto from the stripping chamber by the automated substrate handling apparatus.
[28" id="US-20010009459-A1-CLM-00028] 28. The apparatus of
claim 27 , further comprising a rotatable platform configured to support the substrate.
[29" id="US-20010009459-A1-CLM-00029] 29. The apparatus of
claim 27 , further comprising a movable stage for positioning the substrate.
[30" id="US-20010009459-A1-CLM-00030] 30. The apparatus of
claim 29 , wherein the control mechanism comprises a computer programmed to receive and record the light measurement, instruct the movable stage to move the substrate, and instruct a robot to move the substrate to and from the movable stage.
[31" id="US-20010009459-A1-CLM-00031] 31. The apparatus of
claim 29 , wherein the first optical apparatus comprises a primary band pass filter for restricting the beam of high energy light to a predetermined wavelength band.
[32" id="US-20010009459-A1-CLM-00032] 32. The apparatus of
claim 31 , wherein the primary band pass filter comprises a filter for passing radiation to induce fluorescence in the material.
[33" id="US-20010009459-A1-CLM-00033] 33. The apparatus of
claim 31 , wherein the primary band pass filter is configured to pass light wavelengths which are substantially absorbed by the material and substantially reflected by the substrate.
[34" id="US-20010009459-A1-CLM-00034] 34. The apparatus of
claim 31 , wherein the primary band pass filter is configured to pass light wavelengths which are substantially reflected by the material and substantially absorbed by the substrate.
[35" id="US-20010009459-A1-CLM-00035] 35. The apparatus of
claim 24 , wherein the second optical apparatus is positioned approximately directly opposite the first optical apparatus.
[36" id="US-20010009459-A1-CLM-00036] 36. The apparatus of
claim 24 , wherein the at least one high energy light source comprises a mercury lamp.
[37" id="US-20010009459-A1-CLM-00037] 37. The apparatus of
claim 24 , wherein the at least one high energy light source comprises a xenon lamp.
[38" id="US-20010009459-A1-CLM-00038] 38. The apparatus of
claim 24 , wherein the light intensity sensing apparatus comprises a silicon diode sensor for producing a light intensity measurement.
[39" id="US-20010009459-A1-CLM-00039] 39. The apparatus of
claim 38 , further comprising a power meter for converting the light intensity measurement into a digital form.
[40" id="US-20010009459-A1-CLM-00040] 40. The apparatus of
claim 24 , wherein the light intensity sensing apparatus comprises a photo-multiplier tube having a signal output.
[41" id="US-20010009459-A1-CLM-00041] 41. The apparatus of
claim 24 , wherein the first optical apparatus is capable of configuring and directing a high energy light beam configured as a sheet beam.
[42" id="US-20010009459-A1-CLM-00042] 42. The apparatus of
claim 24 , wherein the first optical apparatus is capable of configuring and directing a sheet beam having a width at least as wide as a maximum width of the substrate.
[43" id="US-20010009459-A1-CLM-00043] 43. The apparatus of
claim 24 , wherein the preselected location is suitable for accommodating a substrate including a photo-resist material on at least a portion of the substrate.
[44" id="US-20010009459-A1-CLM-00044] 44. An apparatus for determining an endpoint for stripping of a material from a surface of a substrate, comprising:
at least one high energy light source;
first optical apparatus for forming a beam of high energy light and directing from a first direction the beam of high energy light to a preselected location suitable for accommodating a substrate having a surface including material on at least a portion thereof;
second optical apparatus for collecting emanated light from the preselected location as a secondary light beam and directing the secondary light beam through a filter configured to pass a secondary light beam;
a dichromatic mirror positioned in apposition to the preselected location for passing the beam of high energy light, for allowing the beam of high energy light to strike the preselected location at an angle of incidence of approximately 90°, and for passing fluoresced light reflected at an angle of departure of approximately 90° from the preselected location suitable for accommodating a substrate having a surface including material on at least a portion thereof; and
a light intensity sensing apparatus for receiving the filtered secondary light beam, measuring an intensity thereof, and generating a signal representative of the measured light intensity.
[45" id="US-20010009459-A1-CLM-00045] 45. The apparatus of
claim 44 , further comprising a stripping chamber for receiving a substrate including material on a surface thereof.
[46" id="US-20010009459-A1-CLM-00046] 46. The apparatus of
claim 45 , further comprising a control mechanism for processing the signal representative of the measured light intensity.
[47" id="US-20010009459-A1-CLM-00047] 47. The apparatus of
claim 46 , further comprising an automated substrate handling apparatus for moving a substrate to and from the stripping chamber.
[48" id="US-20010009459-A1-CLM-00048] 48. The apparatus of
claim 47 , further comprising a plurality of sites for selective movement of a substrate thereto from the stripping chamber by the automated substrate handling apparatus.
[49" id="US-20010009459-A1-CLM-00049] 49. The apparatus of
claim 47 , further including a rotatable platform for supporting and positioning a substrate.
[50" id="US-20010009459-A1-CLM-00050] 50. The apparatus of
claim 47 , further including a moveable stage for supporting and positioning a substrate.
[51" id="US-20010009459-A1-CLM-00051] 51. The apparatus of
claim 46 , wherein the control mechanism comprises a computer programmed to receive and record the light measurement, instruct the movable stage to move a substrate, and instruct a robot to move the substrate to and from the movable stage.
[52" id="US-20010009459-A1-CLM-00052] 52. The apparatus of
claim 44 , wherein the first optical apparatus comprises a primary band pass filter for restricting the beam of high energy light to a predetermined wavelength band.
[53" id="US-20010009459-A1-CLM-00053] 53. The apparatus of
claim 52 , wherein the primary band pass filter comprises a filter for passing wavelength bands which induce fluorescence in the material.
[54" id="US-20010009459-A1-CLM-00054] 54. The apparatus of
claim 52 , wherein the primary band pass filter is configured to pass wavelengths of high energy light which are substantially absorbed by the material and substantially reflected by the substrate.
[55" id="US-20010009459-A1-CLM-00055] 55. The apparatus of
claim 52 , wherein the primary band pass filter is configured to pass wavelengths of high energy light which are substantially reflected by the material and substantially absorbed by the substrate.
[56" id="US-20010009459-A1-CLM-00056] 56. The apparatus of
claim 44 , wherein the dichromatic mirror is positioned approximately directly above, and a preselected distance from the surface of the substrate.
[57" id="US-20010009459-A1-CLM-00057] 57. The apparatus of
claim 44 , wherein the at least one high energy light source comprises a mercury lamp.
[58" id="US-20010009459-A1-CLM-00058] 58. The apparatus of
claim 44 , wherein the at least one high energy light source comprises a xenon lamp.
[59" id="US-20010009459-A1-CLM-00059] 59. The apparatus of
claim 44 , wherein the light intensity sensing apparatus comprises a silicon diode sensor which produces a light intensity measurement.
[60" id="US-20010009459-A1-CLM-00060] 60. The apparatus of
claim 59 , further comprising a power meter for converting the light intensity measurement into a digital form.
[61" id="US-20010009459-A1-CLM-00061] 61. The apparatus of
claim 44 , wherein the light intensity sensing apparatus comprises a photo-multiplier tube having a signal output.
[62" id="US-20010009459-A1-CLM-00062] 62. The apparatus of
claim 49 , wherein the first optical apparatus is capable of configuring and directing a high energy light beam configured as a sheet beam.
[63" id="US-20010009459-A1-CLM-00063] 63. The apparatus of
claim 62 , wherein the first optical apparatus is capable of configuring and directing a sheet beam having a width at least as wide as a maximum width of the substrate.
[64" id="US-20010009459-A1-CLM-00064] 64. The apparatus of
claim 44 , wherein the preselected location is suitable for accommodating a substrate including a photo-resist material on at least a portion of the substrate.
类似技术:
公开号 | 公开日 | 专利标题
US6429928B2|2002-08-06|Method and apparatus employing external light source for endpoint detection
JP3399040B2|2003-04-21|Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5980828B2|2016-08-31|Methods and systems for semiconductor manufacturing processes
US6369887B2|2002-04-09|Method and apparatus for automated, in situ material detection using filtered fluoresced, reflected, or absorbed light
KR100516405B1|2005-09-22|Apparatus for inspecting an edge exposure area of wafer
CN100373570C|2008-03-05|Manufacturing process of using scatterometry to obtain optimization of circuit structures
US7253901B2|2007-08-07|Laser-based cleaning device for film analysis tool
US6448097B1|2002-09-10|Measure fluorescence from chemical released during trim etch
TWI664491B|2019-07-01|Inspection apparatus, computer program product and method of monitoring an operating condition of radiation source arrangement
EP3361315A1|2018-08-15|Inspection apparatus and method of inspecting structures
JP2005094018A|2005-04-07|Lithography apparatus and device manufacturing method
US6381021B1|2002-04-30|Method and apparatus for measuring reflectivity of deposited films
US20100279213A1|2010-11-04|Methods and systems for controlling variation in dimensions of patterned features across a wafer
US7102737B2|2006-09-05|Method and apparatus for automated, in situ material detection using filtered fluoresced, reflected, or absorbed light
KR100529647B1|2005-11-17|Apparatus and method for detecting particle on wafer
US6458607B1|2002-10-01|Using UV/VIS spectrophotometry to regulate developer solution during a development process
US6720568B2|2004-04-13|Method and system for optical inspection of a structure formed with a surface relief
KR20050014424A|2005-02-07|Method and apparatus for inspecting a substrate
JP2006503419A|2006-01-26|Irradiation device for inspecting an object covered with a photosensitive resist
KR19990009190A|1999-02-05|Spectroscopic Thickness Measurement Device
JPH0682723B2|1994-10-19|Measuring device
同族专利:
公开号 | 公开日
KR20010031829A|2001-04-16|
KR100402508B1|2003-10-22|
US6509960B2|2003-01-21|
US6429928B2|2002-08-06|
EP1029231A4|2005-08-17|
WO1999023472A1|1999-05-14|
EP1029231A1|2000-08-23|
US20010046043A1|2001-11-29|
JP2003519433A|2003-06-17|
JP2007189248A|2007-07-26|
US5969805A|1999-10-19|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US4198261A|1977-12-05|1980-04-15|Gould Inc.|Method for end point detection during plasma etching|
US4208240A|1979-01-26|1980-06-17|Gould Inc.|Method and apparatus for controlling plasma etching|
JPS56108234A|1980-01-31|1981-08-27|Fujitsu Ltd|Etching treatment method|
US4377436A|1980-05-13|1983-03-22|Bell Telephone Laboratories, Incorporated|Plasma-assisted etch process with endpoint detection|
JPS5753430B2|1980-09-10|1982-11-12|||
US4500918A|1981-10-19|1985-02-19|Canon Kabushiki Kaisha|Original reading apparatus|
US4482424A|1983-05-06|1984-11-13|At&T Bell Laboratories|Method for monitoring etching of resists by monitoring the flouresence of the unetched material|
US4586822A|1983-06-21|1986-05-06|Nippon Kogaku K. K.|Inspecting method for mask for producing semiconductor device|
JPH0426208B2|1984-07-23|1992-05-06|Fujitsu Ltd||
US4800282A|1985-02-07|1989-01-24|Sharp Kabushiki Kaisha|Apparatus and method for detecting residual organic compounds|
US4713140A|1987-03-02|1987-12-15|International Business Machines Corporation|Laser luminescence monitor for material thickness|
US4846920A|1987-12-09|1989-07-11|International Business Machine Corporation|Plasma amplified photoelectron process endpoint detection apparatus|
DE68923247T2|1988-11-04|1995-10-26|Fujitsu Ltd|Process for producing a photoresist pattern.|
JPH03155112A|1989-11-13|1991-07-03|Nikon Corp|Measurement of exposure conditions|
JPH03165518A|1989-11-24|1991-07-17|Nec Corp|Ashing device for photoresist|
JPH03194917A|1989-12-22|1991-08-26|Nec Corp|Method with plasma for peeling photoresist|
US5162867A|1990-01-26|1992-11-10|Canon Kabushiki Kaisha|Surface condition inspection method and apparatus using image transfer|
JP3469251B2|1990-02-14|2003-11-25|株式会社東芝|Method for manufacturing semiconductor device|
JP3066762B2|1990-10-16|2000-07-17|コニカ株式会社|Image forming device|
JPH04164316A|1990-10-29|1992-06-10|Nec Corp|Photoresist removal device|
US5362356A|1990-12-20|1994-11-08|Lsi Logic Corporation|Plasma etching process control|
JPH04280650A|1991-03-08|1992-10-06|Fujitsu Ltd|Manufacture of semiconductor device|
US5176790A|1991-09-25|1993-01-05|Applied Materials, Inc.|Process for forming a via in an integrated circuit structure by etching through an insulation layer while inhibiting sputtering of underlying metal|
DE4132558C1|1991-09-30|1992-12-03|Secon Halbleiterproduktionsgeraete Ges.M.B.H., Wien, At||
US5264328A|1992-04-24|1993-11-23|International Business Machines Corporation|Resist development endpoint detection for X-ray lithography|
US5308447A|1992-06-09|1994-05-03|Luxtron Corporation|Endpoint and uniformity determinations in material layer processing through monitoring multiple surface regions across the layer|
JP3111661B2|1992-07-24|2000-11-27|ソニー株式会社|Dry etching method|
US5312717A|1992-09-24|1994-05-17|International Business Machines Corporation|Residue free vertical pattern transfer with top surface imaging resists|
US5444265A|1993-02-23|1995-08-22|Lsi Logic Corporation|Method and apparatus for detecting defective semiconductor wafers during fabrication thereof|
US5350236A|1993-03-08|1994-09-27|Micron Semiconductor, Inc.|Method for repeatable temperature measurement using surface reflectivity|
US5362969A|1993-04-23|1994-11-08|Luxtron Corporation|Processing endpoint detecting technique and detector structure using multiple radiation sources or discrete detectors|
WO1994025977A1|1993-04-28|1994-11-10|Applied Materials, Inc.|Method and apparatus for etchback endpoint detection|
JP3279038B2|1994-01-31|2002-04-30|ソニー株式会社|Plasma apparatus and plasma processing method using the same|
US5900103A|1994-04-20|1999-05-04|Tokyo Electron Limited|Plasma treatment method and apparatus|
US5483568A|1994-11-03|1996-01-09|Kabushiki Kaisha Toshiba|Pad condition and polishing rate monitor using fluorescence|
JPH08174411A|1994-12-22|1996-07-09|Ebara Corp|Polishing device|
JPH08220010A|1995-02-17|1996-08-30|Nippon Steel Corp|Semiconductor processing apparatus|
US5663797A|1996-05-16|1997-09-02|Micron Technology, Inc.|Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers|
US5969805A|1997-11-04|1999-10-19|Micron Technology, Inc.|Method and apparatus employing external light source for endpoint detection|US5969805A|1997-11-04|1999-10-19|Micron Technology, Inc.|Method and apparatus employing external light source for endpoint detection|
US6117348A|1998-06-03|2000-09-12|Taiwan Semiconductor Manufacturing Company, Ltd|Real time monitoring of plasma etching process|
US6174801B1|1999-03-05|2001-01-16|Taiwan Semiconductor Manufacturing Company|E-beam direct writing to pattern step profiles of dielectric layers applied to fill poly via with poly line, contact with metal line, and metal via with metal line|
US6451158B1|1999-12-21|2002-09-17|Lam Research Corporation|Apparatus for detecting the endpoint of a photoresist stripping process|
US6707540B1|1999-12-23|2004-03-16|Kla-Tencor Corporation|In-situ metalization monitoring using eddy current and optical measurements|
FR2809491B1|2000-05-26|2008-07-04|Production Rech S Appliquees|METHOD AND APPARATUS FOR ELLIPSOMETRIC METROLOGY FOR SAMPLE CONTAINED IN A CHAMBER OR THE LIKE|
US6612901B1|2000-06-07|2003-09-02|Micron Technology, Inc.|Apparatus for in-situ optical endpointing of web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies|
US6381021B1|2000-06-22|2002-04-30|Applied Materials, Inc.|Method and apparatus for measuring reflectivity of deposited films|
EP1178300A1|2000-08-04|2002-02-06|Infineon Technologies SC300 GmbH & Co. KG|Arrangement and method for removing an organic material from a semiconductor device|
US6491569B2|2001-04-19|2002-12-10|Speedfam-Ipec Corporation|Method and apparatus for using optical reflection data to obtain a continuous predictive signal during CMP|
US7196800B1|2001-07-26|2007-03-27|Advanced Micro Devices, Inc.|Semiconductor die analysis as a function of optical reflections from the die|
EP1283546A1|2001-08-08|2003-02-12|Infineon Technologies AG|Method for detecting removal of organic material from a semiconductor device in a manufacturing process|
KR100422448B1|2001-10-11|2004-03-11|삼성전자주식회사|Alarm apparatus for exchanging lamp of etching device and thereof method|
KR100455437B1|2001-12-29|2004-11-06|엘지.필립스 엘시디 주식회사|A liquid crystal display device formed on glass substrate having improved efficient|
US6939761B2|2002-11-22|2005-09-06|Micron Technology, Inc.|Methods of forming buried bit line DRAM circuitry|
US20050070103A1|2003-09-29|2005-03-31|Applied Materials, Inc.|Method and apparatus for endpoint detection during an etch process|
US7158221B2|2003-12-23|2007-01-02|Applied Materials, Inc.|Method and apparatus for performing limited area spectral analysis|
AU2006301905A1|2005-10-11|2007-04-19|Bt Imaging Pty Limited|Method and system for inspecting indirect bandgap semiconductor structure|
KR100660332B1|2005-12-28|2006-12-22|동부일렉트로닉스 주식회사|Method for fabricating image sensor|
JP2007313499A|2006-04-27|2007-12-06|Seiko Epson Corp|Pattern formation method, drop jetting device, and circuit module|
US8076628B2|2008-09-25|2011-12-13|Apple Inc.|Ambient light sensor with reduced sensitivity to noise from infrared sources|
US8908161B2|2011-08-25|2014-12-09|Palo Alto Research Center Incorporated|Removing aluminum nitride sections|
US8709268B2|2011-11-14|2014-04-29|Spts Technologies Limited|Etching apparatus and methods|
JP5911351B2|2012-03-30|2016-04-27|学校法人中部大学|Semiconductor substrate surface monitoring method|
CN102636491B|2012-04-17|2013-10-30|南京邮电大学|Semiconductor defect detection method based on surface plasma wave|
US9043743B2|2013-10-22|2015-05-26|International Business Machines Corporation|Automated residual material detection|
CN104733336B|2013-12-19|2017-11-03|中微半导体设备有限公司|The end-point detecting system and method for removing of photoresist by plasma technique|
KR20200061982A|2018-11-26|2020-06-03|조해연|Optical measurement apparatus, chemical supply equipment comprising optical measurement apparatus and processing equipment comprising optical measurement apparatus using chemical|
法律状态:
2003-01-02| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2006-06-23| FPAY| Fee payment|Year of fee payment: 4 |
2010-01-04| AS| Assignment|Owner name: ROUND ROCK RESEARCH, LLC,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 |
2010-06-28| FPAY| Fee payment|Year of fee payment: 8 |
2014-06-25| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US08/963,508|US5969805A|1997-11-04|1997-11-04|Method and apparatus employing external light source for endpoint detection|
US09/399,242|US6429928B2|1997-11-04|1999-09-20|Method and apparatus employing external light source for endpoint detection|
US09/796,232|US6509960B2|1997-11-04|2001-02-28|Method and apparatus employing external light source for endpoint detection|US09/796,232| US6509960B2|1997-11-04|2001-02-28|Method and apparatus employing external light source for endpoint detection|
[返回顶部]